Publicações Recentes

ANALYSIS OF SYMBOLIC DATA
EXPLORATORY METHODS FOR EXTRACTING STATISTICAL INFORMATION FROM COMPLEX DATA
AUTORES:
Bock, H.-H., RWTH Aachen, Germany
Diday, E., Universite Paris IX-Dauphine, Paris, France
EDITORA: Springer
ISBN: 3-540-66619-2
2000. XVIII, 425 pp. Softcover
PALAVRAS-CHAVE:
Data analysis, data mining, statistics, knowledge discovery
DESCRIÇÃO:

This first systematic and self-contained monograph on "Symbolic Data Analysis" presents the most recent methods for analyzing and visualizing symbolic data. It generalizes classical methods of exploratory, statistical and graphical data analysis to the case of complex data where the entries of a data table are, e. g., sets of categories or of numbers, intervals or probability distributions. Typical methods include: graphical displays using Zoom Stars, visualization and feature extraction by symbolic factor analysis, decision trees, discrimination, classification and clustering methods. Several benchmark examples from National Statistical Offices illustrate the usefulness of the methods. The book contains an extensive bibliography and a subject index.

CONTEÚDO:

E. Diday: Symbolic Data Analysis and the SODAS Project: Purpose, History, Perspective.- H.H. Bock: The Classical Data Situation.- H.H. Bock: Symbolic Data.- H.H. Bock, E. Diday: Symbolic Objects.- V. Stéphan, G. Hébrail, Y. Lechevallier: Generation of Symbolic Objects from Relational Databases.- P. Bertrand, F. Goupil: Descriptive Statistics for Symbolic Data.- M. Noirhomme-Fraiture, M. Rouard: Visualizing and Editing Symbolic Objects.- Similarity and Dissimilarity: F. Esposito, D. Malerba, V. Tamma, H.H. Bock: Classical Resemblance Measures.- H.H. Bock: Dissimilarity Measures for Probability Distributions.- F. Esposito, D. Malerba, V. Tamma: Dissimilarity Measures for Symbolic Objects.- F. Esposito, D. Malerba, F. Lisi: Matching Symbolic Objects.- Symbolic Factor Analysis: H.H.Bock: Classical Principal Component Analysis.- A. Chouakria, P. Cazes, E. Diday: Symbolic Principal Component Analysis.- N.C. Lauro, F. Palumbo, R. Verde: Factorial Discriminant Analysis on Symbolic Objects.- Discrimination: Assigning Symbolic Objects to Classes: J. Rasson, S. Lissoir: Classical Methods of Discrimination.- J. Rasson, S. Lissoir: Symbolic Kernel Discriminant Analysis.- E. Périnel, Y. Lechevalier: Symbolic Discrimination Rules.- M. Bravo Llatas, J. Garcia-Santesmases: Segmentation Trees for Stratified Data.- Clustering Methods for Symbolic Objects: M. Chavent, H.H. Bock: Clustering Problem, Clustering Methods for Classical Data.- M. Chavent: Criterion-Based Divisive Clustering for Symbolic Data.- P. Brito: Hierarchical and Pyramidal Clustering with Complete Symbolic Objects.- G. Polaillon: Pyramidal Classification for Interval Data Using Galois Lattice Reduction.- M. Gettler-Summa, C. Pardoux: Symbolic Approaches for Three-way Data.- Illustrative Benchmark Analysis: R. Bisdorff: Introduction.- R. Bisdorff: Professional Careers of Retired Working Persons.- A. Iztueta, P. Calvo: Labour Force Survey.- F. Goupil, M. Touati, E. Diday, R. Moult: Census Data from the Office for National Statistics.- A. Morineau: The SODAS Software Package.